

理化学研究所 計算科学研究センター

量子HPC連携プラットフオーム部門 量子HPCプラットフォーム運用技術ユニット (本務) 運用技術部門 施設運転技術ユニット

(兼務) AI for Scienceプラットフォーム部門 AI開発計算環境運用技術ユニット

三浦 信一

実施体制

三浦信一 事業項目5代表

運用技術部門 施設運転技術ユニット (兼) 量子HPC連携プラットフオーム部門 量子HPCプラットフォーム運用技術ユニット ユニットリーダ

松下聡 施設整備担当

運用技術部門 施設運転技術ユニット (兼) 量子HPC連携プラットフオーム部門 量子HPCプラットフォーム運用技術ユニット シニアテクニカルスタッフ

幸朋矢 開発・運用担当 (2024年4月着任)

量子HPC連携プラットフオーム部門 量子HPCプラットフォーム運用技術ユニット 技師

内田 崇 開発・運用担当 (2024年5月 着任)

量子HPC連携プラットフオーム部門 量子HPCプラットフォーム運用技術ユニット テクニカルスタッフ

事業項目5の実施内容

- 量子コンピュータおよび量子シミュレーション向け高性能スーパーコンピュータを設置・整備し、これらのシステムとスーパーコンピュータ「富岳」を始めとするスパコンからなる量子・スパコン連携プラットフォームを構築し運用する
- 実施内容
 - 1. 量子・スパコン連携プラットフォームのユーザ管理・運用システムの開発
 - 実施期間: 2023年度~ 2025年度
 - ユーザの登録・管理、さらに、それらのユーザーがシステムを利用する場合の認証を行う機能が必要であり、そのための管理ツール、および、認証のための仕組み(Web)を整備する。
 - 量子コンピュータやスパコン等、安全保障審査を考慮したオープンな管理システムを作成
 - 富岳の経験を踏まえ、富岳Nextでの利用も見越したユーザ管理システムを構築
 - 量子・スパコン連携プラットフォームのソフトウェア環境の整備
 - 実施期間: 2024年度~2026年度
 - スパコン側の利用環境として「富岳」と高性能シミュレーション向けスパコンとして整備するシステムを想定する。 「富岳」においては、ユーザー利用のポータルをOpen OnDemandで整備し、必要なソフトウェアをスパコン向け パッケージマネジャーであるSpackもしくはSingularity等のHPC向けコンテナ環境で提供し、ユーザーの利便性の 向上を図る。
 - 3. 量子コンピュータの整備と「富岳」との接続
 - 実施期間: 2023年度~ 2025年度
 - 超伝導型の量子コンピュータは、「富岳」と同じ建屋内に設置し、「富岳」と高速なネットワークで結合する。これによって、低レイテンシ・高バンド幅のネットワークに接続することによるシステム連携の効果を評価
 - InfiniBand もしくはEthernet(100GbE以上)のネットワークで近接で接続

事業項目5における実施内容(続き)

- ・実施内容(続き)
 - 4. 量子・スパコン連携プラットフォームにおけるモニタリング、障害検知手 法の開発
 - 実施期間: 2025年度~ 2026年度
 - 全体の運用を円滑に進めるためのツールを整備する。システムの稼働率のモニタリング、障害検知などを行うためのツールを開発
 - 5. 広域での量子・スパコン連携環境の整備
 - 実施期間: 2023年度~ 2025年度
 - イオントラップ型の量子コンピュータは理化学研究所和光キャンパスに整備する。これらの量子コンピュータとは接続としてはNIIが提供するSINETを用い、広帯域低遅延なネットワークで接続する。また遅延時間を改善するために広域光ネットワークでの接続も検討し、試験運用・評価を行うとともに、広域で量子コンピュータとスーパーコンピュータとの接続方法の実証を行う
 - 6. 複数サイトにおける量子・スパコン連携評価
 - 実施期間: 2025年度~ 2026年度
 - 他サイト 特に東京大学と大阪大学からのアクセスの実証実験を行う。最終目標の一つである相互運用のための実証実験を行う。

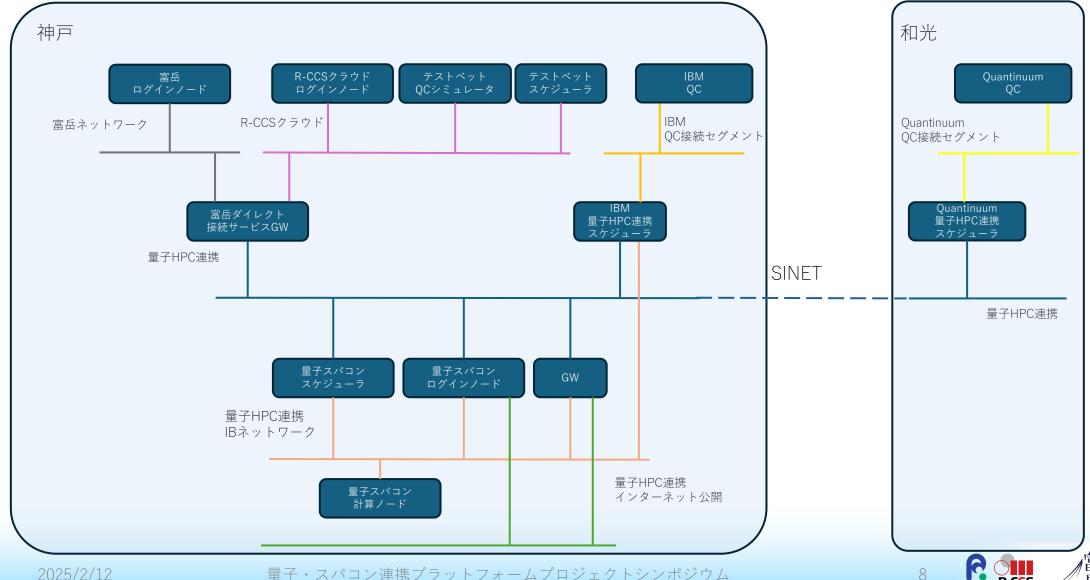
IBM Qの導入

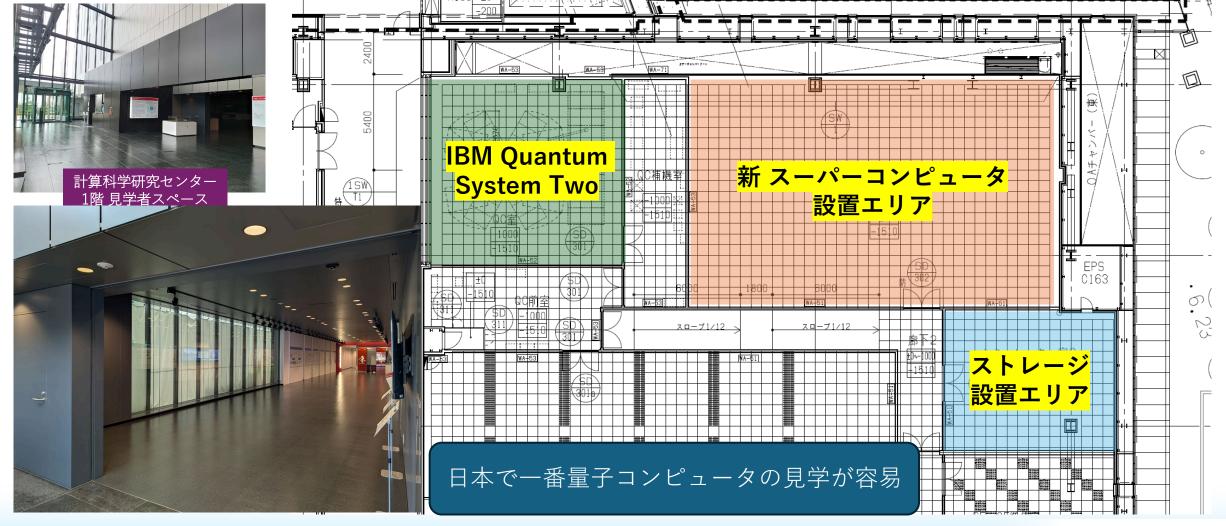
- 2025年度春を目標にIBM Quantum System Two(超電導型量子 コンピュータ)をR-CCS(神戸)に導入予定
 - 最新アーキテクチャである、Heronを導入予定
 - 本プロジェクトによる占有利用
 - ・ 富岳およびスパコン(隣接・遠隔)と直接通信可能とする
- 導入スケジュール
 - ~2023年3月末 建屋・設備設計・積算 (完了)
 - 2024年6月~2025年1月 建屋・設備工事(完了)
 - 2025年1月~ IBM-Q 設置工事
- 導入完了までの間、クラウド経由にしてIBM Qを利用中

Quantinuumの導入

- 2025年春を目標にQuantinuum H1-2 (イオントラップ型量子コンピュータ)を理研(和光地区)に導入完了
- 導入スケジュール
 - 第1フェーズ(約6か月)(完了)
 - Quantinuum社に設置されたH1-2 をクラウド利用(占有)
 - 1ヶ月あたりの総稼働時間は255時間、そのうち約180時間が、ジョブの実行と自動校 正で利用可能
 - 第2フェーズ(約9か月)(完了)
 - 現在利用中のH1-2 を和光に輸送
 - Quantinuum社に設置された別の量子コンピュータをクラウド利用(51,000 HQC)
 - 第3フェーズ(現在)
 - 和光に設置したH1-2 を占有利用
 - 1ヶ月あたりの総稼働時間は315時間、そのうち約220時間が、ジョブの実行と自動校 正で利用可能

シミュレータ(GPUスパコン)導入計画


- 現状の量子コンピュータは量子ビット数が十分ではなく、将来 を見据えた量子ビット数で評価可能なシミュレータが必要
 - GPUを用いた量子コンピュータシミュレータを導入
 - R-CCSに設置予定
 - 温水冷却技術を用いた高効率なスーパーコンピュータ
- GPUスパコンの導入を想定し、スケジューラの試験環境を整備
 - REST-APIを経由したジョブ投入等の環境を評価中
 - 量子コンピュータのコーディネーター間の連携用プラグインを開発中



量子HPC連携プラットフォームで構築するネットワーク環境

IBMQおよびシミュレータ導入予定位置

2024年度の実施状況

- 量子・スパコン連携プラットフォームのユーザ管理・運用システムの開発
 - 年度内にテスト運用の開始を予定
- 量子コンピュータの整備と「富岳」との接続
 - IBM社製量子コンピュータの導入のための施設改修を完了
 - Quantinuum社製量子コンピュータの導入を完了・稼働開始済み
- 広域での量子・スパコン連携環境の整備
 - 神戸地区・和光地区間のネットワークの整備完了
- 量子・スパコン連携プラットフォームのソフトウェア環境整備
 - ユーザー利用のポータルをOpen OnDemandで整備し、必要なソフトウェアをSingularityによるコンテナ環境で構築中

