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⚫ Algorithm for two-phase flow
⚫ Solve Navier-stokes and Scalar Transport Eqs.

⚫ Multiscale phenomena → Large-gap on time-step (∆𝑡)

► Flow convection vs fine-scale breakup

Background

2[1] Kim et al., Direct numerical simulation on millimeter-sized air bubble in turbulent channel flow, 2024
< Navier-stoke equations [1]>
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⚫ Volume of Fluid (VOF)

⚫ Sharp interface model (SLIC, WLIC, PLIC)

⚫ Advection scheme with interface model

► e.g., geometrical advection + PLIC

⚫ Need extra model for surface tension (CSF)

⚫ Phase-field (diffuse interface)

⚫ Diffuse interface Model

► Cahn-Hilliard (Cons.), Allen-Cahn (Non-Cons.)

⚫ Chemical potential 𝜇

► Naturally incorporate surface tension

⚫ Require small-scale ∆𝑡

► Due to high order derivative (𝑴𝜀2∇4𝜙)

< Phase-field [3] >
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< Various VOF method [2]>

Exact interface WLIC

SLIC PLIC
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+ 𝑢 ∙ ∇ 𝑪 = 0

[2] Mohan and Tomar, Volume of Fluid Method : A brief Review, 2024
[3] Gomez et al., Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, 2014



⚫ Exponential integrators (Matrix Exponential)

⚫ Linear part : Exact solution (matrix exponential)

⚫ Nonlinear part : Needs ETD or RK schemes

⚫ Stable with large ∆𝒕, accurate linear integration

⚫ Requiring expensive matrix exponential

► High cost in HPC (Memory, Communication)

Background
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[2] Gomez et al., Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, 2014
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⚫ Quantum Hamiltonian simulation
⚫ Matrix exponential time evolution natively

⚫ Potentially eliminating limitations

► Removes HPC bottleneck

⚫ Requirements

► Feasible on current quantum platforms
► Linearization of Nonlinear terms
► Unitary embedding of non-unitary operators (Diffusion etc.)

𝜓 = 𝑒−𝑖 ෡𝐻𝑡𝜓0⇒𝑖
𝑑

𝑑𝑡
𝜓 = ෡𝐻𝜓



⚫ Hamiltonian simulation for overcoming stiff time integration in high-order PDEs
⚫ Restricting severe when coupled with another physical model (e.g., Navier-stokes)

⚫ Bypassing such restrictions using matrix exponential 𝒆−𝑨𝒕, implemented as a sequence of quantum gates

Research Objectives

4

High-order PDEs Microscale Phenomena Restricting term Time-step restriction

Cahn-Hilliard Interface evolution 4th-order derivative (𝛻4𝜙)
𝑑𝑡𝑚𝑎𝑥 ~ 𝑑𝑥4

16× smaller
Kuramoto-Sivanshinsky Instability, Super-diffusion 2nd+4th-order terms (−𝛻2𝑢 − 𝛻4𝑢)

Cahn-Hilliard 
+ Navier-stokes

⚫ Growing Hybrid Quantum-HPC platforms
⚫ To overcome NISQ limitation supported by HPCs

⚫ Needs for proper usage of these platforms

⚫ Limitation of current (Carleman, KvN) Linearization
⚫ Impractical for Current NISQ devices

→ Exponential growth in state vector, accuracy issue from truncation

Multi-scale/Nonlinear PDE

NISQ device (Integrated with HPC)

Quantum-classical hybrid algorithm

Time-stepping
Strategy

WPT-based
Hamiltonian simulation

⚫ We propose Quantum-classical hybrid algorithm
⚫ Warped Phase Transform (WPT)-based Schrödingerisation

► Transforming dissipative system (Non-unitary) into a conservative system (Unitary)
► PDEs can be calculated from quantum computer (Hamiltonian simulation) for linear system

⚫ Time-stepping Strategy for linear treatment of nonlinear term

► Time-integrating with ∆𝑡 from quantum circuit

► Updated nonlinear term from classical computer

⚫ Modification for practical calculation in NISQ (QFT → FFT in WPT)

► Reducing depth of quantum gates (Initialization, QFT, IQFT for Warped phase variables)
► Reducing qubit requirements (for Warped phase variables)



Pre-process using classical computer WPT-based Schrödingerisation 

Numerical method

General PDE → ODE operator
/ spatial discretization

Normalize 

𝜙(𝑡)
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⚫ WPT-based Schrödingerisation [1]
⚫ PDE → ODE (spatial discretization     )

⚫ Decomposition into Hermitian

⚫ Warped Phase Transform (𝝓 → 𝝎)

⚫ Fourier transform (𝝎 → 𝝍)

[1] Jin et al., Quantum simulation of partial differential equations via Schrödingerisation, 2022

Parallel execution: prepare individual quantum circuits

Unitary gate as 𝜂1

Initial distribution as 𝜂1 Initial distribution as 𝜂𝑛

Unitary gate as 𝜂𝑛

FFT (𝑝 ⟹ 𝜂)

Decompose to



Numerical method

⚫ Time-stepping Hamiltonian simulation
⚫ Evolve ȁ ۧ𝜓 𝑡 to target Δ𝑡 iteratively

⚫ Assume local linearity of the Nonlinear PDE over Δ𝑡

⚫ Update of the Hamiltonian at each Δ𝑡 (classical side)

General PDE → ODE operator
/ spatial discretization

Parallel execution: prepare individual quantum circuitsDecompose to

Pre-process using classical computer WPT-based Schrödingerisation 

Initial distribution as 𝜂1

Unitary gate as 𝜂1

Initial distribution as 𝜂𝑛

Unitary gate as 𝜂𝑛

Normalize 

𝜙(𝑡)

FFT (𝑝 ⟹ 𝜂)

Spatial nonlinear terms
(Convection term)

Decompose to

Spatial nonlinear terms
(Reaction term)

Decompose to

Inviscid burgers 
equation

Allen-Cahn 
phase-field

Quantum: Execute unitary operations 
for individual ODE systems in sequence

Inverse FFT (𝜂 ⟹ 𝑝)

Renormalize
෨𝜙(𝑡 + Δ𝑡)

Restore the scale

Update 
norm

Post-process using classical computer to produce 
output and proceed to the next time-step

Output
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⚫ Quantum Framework
⚫ Qiskit v1.3.0

⚫ Qiskit-Aer v0.15.0

⚫ Qiskit-Aer-gpu v0.15.0

⚫ SciPy v1.11.4

⚫ Simulation environment (R-CCS Cloud)
⚫ CPU node

► AMD EPYC 9684X 
► 768 GB DDR4 RAM

Numerical conditions
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𝑡 = 1.0𝑠𝑡 = 4.0𝑠⚫ Simulators 
⚫ Noise-free (Statevector simulator)

⚫ Sampling via get_statevector (Qiskit)

► For complex state vector

⚫ GPU node

► 2 × AMD EPYC 7763
► 2,048 GB DDR4 RAM
► 8 × NVIDIA A100 80 GB GPUs

< Inviscid Burgers > < Burgers > < Allen-Cahn phase-field >

∆𝑡 = 0.006
𝑆𝑡𝑒𝑝𝑠 = 30

∆𝑡 = 0.014
𝑆𝑡𝑒𝑝𝑠 = 30

∆𝑡 = 0.2
𝑆𝑡𝑒𝑝𝑠 = 30

𝐷 = 0.01



⚫ 2D Nonlinear equations (Allen-Cahn phase-field)
⚫ Classic cases : High-frequency oscillation (∆t = 0.1s) and diverged (∆t = 0.15s)

⚫ Quantum cases : stable until ∆t = 0.15s and Low-frequency oscillation (∆t = 0.2s)

Numerical Results

< ∆t = 0.05 s > < ∆t = 0.1 s > < ∆t = 0.15 s > < ∆t = 0.2 s >
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⚫ Initial distribution

► Random distribution
► Periodic boundary condition

⚫ Resolution

► Length (𝐿𝑥 × 𝐿𝑦) : 0.25 × 0.25

► Mesh : 10 qubit (Nx, Ny = 25)
► Warped phase variable : 𝑝 = 27

⚫ Time-step : 0.03 ~ 0.2 s

⚫ Total time : 4.2 s

⚫ Phase-field parameter

► 𝝐 (Interfacial width) : 0.01
► 𝑾 (Double-well coef.) : 6.0
► 𝑴 (Mobility) : 1.0



⚫ In this study, we propose a time-stepping Hamiltonian 
simulation via WPT-based Schrödingerisation
⚫ Robust hybrid quantum-classical approach for addressing Nonlinear PDEs

⚫ Potential for efficiently simulating Nonlinear dynamics without 
dimensional inflation

⚫ Next plan
⚫ Improve algorithm for practical usage on NISQ device

► Quantum State Preparation (QSP) to data encoding
► Explicit Quantum circuit for specific problem
► Quantum State Tomography (QST) to reconstruct complex state vector

⚫ Calculate from Real-device

⚫ SC25 Best Research Poster Award

Conclusion
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Quantum: Execute unitary operations 
for individual ODE systems in sequence

Inverse FFT (𝜂 ⟹ 𝑝)

Post-process using classical 
computer to produce output and 
the next time-step

General PDE → ODE operator
/ spatial discretization

Parallel execution: prepare
individual quantum circuits

Decompose to

Pre-process using classical computer 
WPT-based Schrödingerisation 

Initial distribution as 𝜂𝑛

Unitary gate as 𝜂𝑛

Normalize 

𝜙(𝑡)

FFT (𝑝 ⟹ 𝜂)

Complex 
state vector
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