JHPC-quantum Symposium 2025
@ || Dec. 12, 2025, Tokyo, Japan

SF-HH/\(T Uy R2F— A AWEIERAARMS
BERDEHOBEATY ESTRNZ ), k=P
=a1b—=>3>

Time-stepping Hamiltonian Simulation for Solving Nonlinear PDEs
via a Quantum-Classical Hybrid Approach

Sangwon Kimt!, Junya Onishitl
Ayato Takii"?, Makoto Tsubokurafl2
11 RIKEN Center for Computational Science, +2 Kobe University



A om
RIKEH R'ccs

® Algorithm for two-phase flow
e Solve Navier-stokes and Scalar Transport Egs.

Background

e Multiscale phenomena — Large-gap on time-step (At)

» Flow convection vs fine-scale breakup

Time integration . .
g Velocity divergence

Iterative Poisson solver

—> ® Volume of Fluid (VOF)
o¢ V)C=0
E + (u . ) =

e Sharp interface model (SLIC, WLIC, PLIC)
e Advection scheme with interface model

4 (RS source) » €.g., geometrical advection + PLIC
‘_8" 8 Momentum Conv.Eq. ~— > Poisson Eq. ¢ Need extra model for surface tension (CSF)
& £ (Momentum) < Proiecti (Pressure)
o 2 rojection
S (Incompressibility)
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e Scalar transport Buoyancy Pressure > = : .
- (by velocity If?|eld) force (interface effect) . Phase-fleld (dlﬁ:use Interface)
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og o . ] Scalar Transport Eq. | ot +(u V)¢ = MV-u
T © Time integration 1 (Density) I
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< Navier-stoke equations [1]>

e Diffuse interface Model

» Cahn-Hilliard (Cons.), Allen-Cahn (Non-Cons.)
e Chemical potential u

» Naturally incorporate surface tension
6F
=—=f' — g2y2
h= 50 f'(p) —e“Vg

Free energy Gradient
term energy term

e Require small-scale At
» Due to high order derivative (Ms2v4¢)
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[1] Kim et al., Direct numerical simulation on millimeter-sized air bubble in turbulent channel flow, 2024

[2] Mohan and Tomar, Volume of Fluid Method : A brief Review, 2024
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[3] Gomez et al., Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, 2014
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RIKEN R-CCS Exact interface WLIC
@ 07)
® Exponential integrators (Matrix Exponential) <«—— ® Volume of Fluid (VOF) EEEEREEEEN
e Linear part : Exact solution (matrix exponential) | D || il
- oc - e’
. Nonll;rear_pzr’i : Needs ETD or RK Is_cheme_s _ S F@-VC=0 I VT
» Stable with large A, accurate linear integration « Sharp interface model (SLIC, WLIC, PLIC) ST @
e Requiring expensive matrix exponential : L : e
. . L e Advection scheme with interface model N ,
» High cost in HPC (Memory, Communication) . . ﬁ—_
» e.g., geometrical advection + PLIC y =B 1)
¢ L . o Need extra model for surface tension (CSF) ] } Y | Y
Do 1p+N@) = 9O =etpy+ [ HIN(pm)dr = |
ot 0 < Various VOF method [1]>
l \ )
Linear term Nonlinear term ® Phase-field (diffuse interface)
d
v 9 b - )p = MV
ot
® Quantum Hamiltonian simulation o Diffuse interface Model
o Matrix exponential time evolution natively » Cahn-Hilliard (Cons.), Allen-Cahn (Non-Cons.)
d B e Chemical potential u
iatp =Hy = yP=e Uy, » Naturally incorporate surface tension
S6F ) -
e Potentially eliminating limitations H= 5p f(¢)—eV¢
» Removes HPC bottleneck Free energy Gradient
e Requirements term energy term
» Feasible on current quantum platforms

e Require small-scale At

» Linearization of Nonlinear terms » Due to high order derivative (Mz2v4g)

» Unitary embedding of non-unitary operators (Diffusion etc.)

[1] Mohan and Tomar, Volume of Fluid Method : A brief Review, 2024
[2] Gomez et al., Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, 2014




ﬁ il Research Objectives

® Hamiltonian simulation for overcoming stiff time integration in high-order PDEs
e Restricting severe when coupled with another physical model (e.g., Navier-stokes)
e Bypassing such restrictions using matrix exponential e~4¢, implemented as a sequence of quantum gates

& o | !n_}__.-’ T
High-order PDEs Microscale Phenomena Restricting term Time-step restriction 5i= -« - Cahn-Hilliard

Cahn-Hilliard Interface evolution 4th-order derivative (7*¢)

Kuramoto-Sivanshinsky  Instability, Super-diffusion 2nd+4th-order terms (—V2u — V*u)

Aty ~ dx*
16x smaller

® Growing Hybrid Quantum-HPC platforms @ Limitation of current (Carleman, KvN) Linearization

e To overcome NISQ limitation supported by HPCs o Impractical for Current NISQ devices
o Needs for proper usage of these platforms — Exponential growth in state vector, accuracy issue from truncation
® We propose Quantum-classical hybrid algorithm S e e 1
o Warped Phase Transform (WPT)-based Schrodingerisation i Multi-scale/Nonlinear PDE i
» Transforming dissipative system (Non-unitary) into a conservative system (Unitary) bommmmmmmm e '.' """""""" '
» PDEs can be calculated from quantum computer (Hamiltonian simulation) for linear system  secccccccccc e R e e

Quantum-classical hybrid algorithm

1
1
o Time-stepping Strategy for linear treatment of nonlinear term i - -
» Time-integrating with At from quantum circuit : WPT-based + | Time-stepping
1
1

» Updated nonlinear term from classical computer Hamiltonian simulation Strategy
o Modification for practical calculation in NISQ (QFT — FFT in WPT) fmm———————————— ; __________________ .
. T . . 1 1
» Reducing depth of quantum gates (Initialization, QFT, IQFT for Warped phase variables) : NISQ device (Integrated with HPC) i

» Reducing qubit requirements (for Warped phase variables) L




ﬁ Sl Numerical method
® WPT-based Schrodingerisation [1]
e PDE — ODE (spatial discretization A )
e Decomposition A into Hermitian
e Warped Phase Transform (¢p — w)
e Fourier transform (w — )

dqﬁ_
P

< —
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Pre-process using classical computer WPT-based Schrédingerisation

[T S
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[1] Jin et al., Quantum simulation of partial differential equations via Schrédingerisation, 2022
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P Time-stepping Hamiltonian simulation Pre-process using classical computer WPT-based Schrddingerisation
e Evolve |y (t)) to target At iteratively ( )
] ; ) General PDE — ODE operator FFT (p = 1) Normalize - o(t)
e Assume local linearity of the Nonlinear PDE over At / spatial discretization [l o) 0= o
e Update of the Hamiltonian at each At (classical side) 1 fn = Fo [ 7] ()
Decompose to Parallel execution: prepare individual quantum circuits
— — Hi+1Ho r \ r )y
— —iH,.At p—
| w (t) > M4 (& ¢ ‘ w (t _|_ At) > N4 Initial distribution as n, Initial distribution as n,,

m |f’Z¢J|x] o % (?) T |f‘z¢]|x]

e w e w H; | | ... Hy I
Inviscid burgers ~ 9¢ ¢ Allen-Cahn dp - OF - + +
equation ot QS_ phase-field ot ¢ =
= ¥ =N ¥ 2 ':'L.I T( Unitary gate as 1, 6*iHn1At) ee- ( Unitary gate as n,, efiHnnAt)
4 N 4 N\ —
Spatial nonlinear terms Spatial nonlinear terms ~ 7 / . /
(Convection term) (Reaction term)
%9 _ (diag(9)- A) o 09 _ ¥t diag (¢ — 1) ¢
ot ot l
+¢1 0 —o3 -1 0 0 i : : . .
—é +dy O il oo @#-1 o0 Quantum: Execute unitary operations Post-process using classical computer to produce
0 —¢s +s 0 20 -1 for individual ODE systems in sequence output and proceed to the next time-step
\. 3 J \. ¥ J r N\ p N
r - \ e \ (8)) = At — ot + AL) > Inverse FFT (n = p)
o Decompose to . Decompose to me met . ~
(diag(¢) - A) ) M diag (¢* — 1) ; _— I t At t At
g My + i Ho My + i He D WE+an), — erAn
S .
B L Renormalize Restore the scale
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H, | ..". H, I H, H, I T t* *
:.l 1™ 2 g —3 . p ate
- ".__ |t + At))m — o iHn At W(t))m ) norm N(t Hqs t+ At)H Output
[ | . Iﬁ';) L |)




@ O Numerical conditions

RIKEN R'ccs

® Quantum Framework
e Qiskit v1.3.0
e Qiskit-Aer v0.15.0
e Qiskit-Aer-gpu v0.15.0
e SciPyv1.11.4

® Simulators

o Noise-free (Statevector simulator)
e Sampling via get_statevector (Qiskit)
» For complex state vector

@ Simulation environment (R-CCS Cloud)

e GPU node

» 2 X AMD EPYC 7763

» 2,048 GB DDR4 RAM

» 8 x NVIDIA A100 80 GB GPUs

e CPU node

» AMD EPYC 9684X
» 768 GB DDR4 RAM

< Inviscid Burgers >
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@ Quantum time-stepping
{_ Quantum One-shot
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< Allen-Cahn phase-field >
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Initial distribution

P OI“ i » Random distribution
e R-CCS Numerlcal ReSUItS » Periodic boundary condition
. . . e Resolution
® 2D Nonlinear equations (Allen-Cahn phase-field) » Length (Ly x Ly) : 0.25 X 0.25
e Classic cases : High-frequency oscillation (At = 0.1s) and diverged (At = 0.15s) » Mesh : 10 qubit (Nx, Ny = 25)
e Quantum cases : stable until At = 0.15s and Low-frequency oscillation (At = 0.2s) > Warped phase variable : p = 27

Time-step : 0.03 ~ 0.2 s
Total time : 4.2 s

< At=0.05s > <At=0.1s> < At=0.15s > <At=02s> o Phase-field parameter

» € (Interfacial width) : 0.01
» W (Double-well coef.) : 6.0

/‘; » M (Mobility) : 1.0
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III Pre-process using classical computer ] )
;ﬂ %—CCS ConCIUSIon WPT-based Schrédingerisation NO;”;'?)"Ze (1) = II?;Et;lI
) t
® In this study, we propose a time-stepping Hamiltonian [ General PDE — ODE operator ] > FFr(. : L
simulation via WPT-based Schrédingerisation / spatial discretization P ’[’e_pa )
e Robust hybrid quantum-classical approach for addressing Nonlinear PDEs ) v . \ - - - J
o Potential for efficiently simulating Nonlinear dynamics without Decompose to ;2T;gsgle’tjzcr]‘:5';1"‘c}rEL?tpsare
dimensional inflation Hy +iHy p ______q _______________ .
e N t ol :' Initial distribution as n,, E
ext plan . Fo =z b
] . . L ) lzs) 1
o Improve algorithm for practical usage on NISQ device e _.. " F .\‘__(_ii"_“if L%E_j_'fi J

» Quantum State Preparation (QSP) to data encoding I
» Explicit Quantum circuit for specific problem I.I.L.I | [ Unitary gate as 7, —ift At)
n e n

» Quantum State Tomography (QST) to reconstruct complex state vector
o Calculate from Real-device

2
® SC25 Best Research Poster Award Quantum: Execute unitary operations Post-process using classical
for individual ODE systems in sequence computer to produce output and
S 3 the next time-step
' - — i
i V()= ettt = [ (L + AL)),, NE Inverse FFT (1 = p)
&Psc25 S e 3 Z|¢t+At b Ot A
st o S N | :

Complex
state vector
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