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Transfer learning in hybrid classical-quantum neural networks

Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran, Quantum 4, 340 (2020).

int-ph] 8 Oct 2020

Transfer learning in hybrid classical-quantum neural networks

Andrea Mari, Thomas R. Bromley, Josh lzaac, Maria Schuld, and Nathan Killoran

Hanadu, 777 Bay Street, Toronto, Ontario, Canada.

We extend the concept of transfer learn-
ing, widely applied in modern machine learn-
ing algorithms, to the emerging context of hy-
brid neural networks composed of classical and
quantum elements. We propose different im-
plementations of hybrid transfer learning, but
we focus mainly on the paradigm in which a
pre-trained classical network is modified and
augmented by a final variational quantum cir-
cuit. This approach is particularly attractive
in the current era of intermediate-scale quan-
tum technology since it allows to optimally
pre-process high dimensional data (e.g., im-
ages) with any state-of-the-art classical net-
work and to embed a select set of highly infor-
mative features into a quantum processor. We
present several proof-of-concept examples of
the convenient application of quantum trans-
fer learning for image recognition and quan-
tum state classification. We use the cross-
platform software library PennyLane to exper-
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Figure 1: General representation of the transfer learning
method, where each of the neural networks A and B can
be either classical or quantum. Metwork A is pre-trained on
a dataset 4 and for 2 task Ta. A reduced network A’
obtained by removing some of the final layers of A, is used
as a fixed feature extractor. The second network B, usually
much smaller than A, is optimized on the specific dataset
Dy and for the specific task T

https://quantum-journal.org/papers/q-2020-10-09-340/
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